
.

Cook
A File Construction Tool

Reference Manual

Peter Miller
pmiller@opensource.org.au

.

This document describes Cook version 2.34
and was prepared 25 September 2010.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

0

Table of Contents(Cook) Table of Contents(Cook)

The README File . 1
Release Notes. 3
How to Build the Sources . 13

Windows NT . 18
Internationalization . 20

c_incl(1) determineinclude dependencies. 22
cook(1) afile construction tool . 26
cook_bom(1) billof materials . 32
cook_lic(1) GNUGeneral Public License. 34
cook_rsh(1) loadbalancing rsh . 43
cookfp(1) calculatefile fingerprint . 45
cooktime(1) setfile times . 47
find_libs(1) findpathnames of libraries. 49
make2cook(1) translatemakefiles into cookbooks 51
roffpp(1) replace.so requests within *roff sources 54

Reference Manual Cook iii

Permuted Index(Cook) PermutedIndex(Cook)

cook_rsh(1) 43 cook_rsh - load balancing rsh
cook_bom(1) 32 cook_bom - bill of materials
cook_bom(1) 32 cook_ bom - bill of materials
cookfp(1) 45 cookfp - calculate file fingerprint
c_incl(1) 22 c_incl - determine dependencies
cook(1) 26 cook - a file construction tool
cook(1) 26 cook - a file construction tool
cook_bom(1) 32 cook_bom - bill of materials
make2cook(1) 51 make2cook - translate makefiles into cookbooks
cookfp(1) 45 cookfp - calculate file fingerprint
cook_rsh(1) 43 cook_rsh - load balancing rsh
cooktime(1) 47 cooktime - set file times
make2cook(1) 51 make2 cook - translate makefiles into cookbooks
c_incl(1) 22 c_incl - determine dependencies
c_incl(1) 22 c_incl - determine dependencies
cook(1) 26 cook - a file construction tool
cookfp(1) 45 cookfp - calculate file fingerprint
cooktime(1) 47 cooktime - set file times
find_libs(1) 49 find_libs - find pathnames of libraries
find_libs(1) 49 find_libs - find pathnames of libraries
cookfp(1) 45 cookfp - calculate file fingerprint
c_incl(1) 22 c_ incl - determine dependencies
make2cook(1) 51 make2cook - translate makefiles into cookbooks
find_libs(1) 49 find_libs - find pathnames of libraries
find_libs(1) 49 find_ libs - find pathnames of libraries
cook_rsh(1) 43 cook_rsh - load balancing rsh
make2cook(1) 51 make2cook - translate makefiles into

cookbooks
make2cook(1) 51 make2cook - translate makefiles into cookbooks
cook_bom(1) 32 cook_bom - bill of materials
find_libs(1) 49 find_libs - find pathnames of libraries
roffpp(1) 54 roffpp - replace .so requests within *roff sources
roffpp(1) 54 roffpp - replace .so requests within *roff sources
roffpp(1) 54 roffpp - replace .so requests within *roff

sources
roffpp(1) 54 roffpp - replace .so requests within * roff sources
cook_rsh(1) 43 cook_rsh - load balancing rsh
cook_rsh(1) 43 cook_ rsh - load balancing rsh
cooktime(1) 47 cooktime - set file times
roffpp(1) 54 roffpp - replace . so requests within *roff sources
roffpp(1) 54 roffpp - replace .so requests within *roff sources
cooktime(1) 47 cooktime - set file times
cook(1) 26 cook - a file construction tool
make2cook(1) 51 make2cook - translate makefiles into cookbooks
roffpp(1) 54 roffpp - replace .so requests within *roff sources

iv Cook ReferenceManual

Read Me(Cook) Read Me(Cook)

NAME
cook − a file construction tool

DESCRIPTION
Thecookprogram is a tool for constructing files, and maintaining referential integrity between files. It is
given a set of files to create, and recipes of how to create and maintain them. In any non-trivial program
there will be prerequisites to performing the actions necessary to creating any file, such as include files.
Thecookprogram provides a mechanism to define these.

When a program is being developed or maintained, the programmer will typically change one file of several
which comprise the program. Thecookprogram examines the last-modified times of the files to see when
the prerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of
date.

Thecookprogram also provides a facility for implicit recipes, allowing users to specify how to form a file
with a given suffix from a file with a different suffix. For example, to createfilename.o fromfilename.c

• Cook is a replacement for the traditional
make(1) tool.

• Cook is more powerful than the traditional
maketool.

• There is amake2cookutility included in the
distribution to help convert makefiles into
cookbooks.

• Cook has true variables, not simple macros.

• Cook has user defined functions.

• Cook has a simple but powerful string-based
description language with many built-in
functions. Thisallows sophisticated filename
specification and manipulation without loss of
readability or performance.

• Cook can build in parallel.

• Cook can distribute builds across your LAN.

• Cook is able to build your project with multiple
parallel threads, with support for rules which
must be single threaded. It is possible to
distribute parallel builds over your LAN,
allowing you to turn your network into a virtual
parallel build engine.

• Cook is able to use fingerprints to supplement
file modification times. This allows build
optimization without contorted rules.

• In addition to walking the dependency graph,
Cook can turn the input rules into a shell script,
or a web page.

• Cook can be configured with an explicit list of
primary source files. This allow the dependency
graph to be constructed faster by not going down
dead ends, and also allows better error messages
when the graph can’t be constructed. This
requires an accurate source file manifest.

• Cook runs on almost any flavor of UNIX. The
source distribution is self configuring using a
GNU Autoconf generated configure script.

• Cook has specialcascadedependencies,
allowing powerful include dependency
specification, amongst other things.

If you are putting together a source-code distribution and planning to write a makefile, consider writing a
cookbook instead. Although Cook takes a day or two to learn, it is much more powerful and a bit more
intuitive than the traditionalmake(1) tool. And Cook doesn’t interpret tab differently to 8 space characters!

Reference Manual Cook 1

Read Me(Cook) Read Me(Cook)

ARCHIVE SITE
The latest version ofcook is available on the Web from:

URL: http://miller.emu.id.au/pmiller/cook/
File: cook-2.34.README # the README from the tar file
File: cook-2.34.spec # RedHat package specification
File: cook-2.34.rm.ps.gz # PostScript of the Reference Manual
File: cook-2.34.ug.ps.gz # PostScript of the User Guide
File: cook-2.34.tar.gz #the complete source

This Web page also contains a few other pieces of software written by me. Please have a look if you are
interested.

MAILING LIST
A mailing list has been created so that users ofcookmay exchange ideas about how to use thecook
program. Discussionmay include, but is not limited to: bugs, enhancements, and applications. The list is
not moderated.

The address of the mailing list is
cook-users@lists.auug.org.au

Pleasedo not send subscribe requests to this address.

To subscribe to this mailing list, visit the cook-users mailing list page, and go through thesubscribe
dialogue.
http://lists.auug.org.au/listinfo/cook-users ,

The software which handles this mailing listcannotsend you a copy of thecookprogram.

BUILDING COOK
Full instructions for building thecookprogram may be found in theBUILDING file included in this
distribution.

COPYRIGHT
cookversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in theLICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

2 Cook ReferenceManual

Read Me(Cook) Read Me(Cook)

NEW IN THIS RELEASE
A number of features have been added tocookwith this release. The following list is only a summary; for
excruciating detail, and also acknowledgements of those who generously sent me feedback, please see the
etc/CHANGES.*files included in this distribution.

Version 2.34 (2010-Sep-25)
• This change set adds a link to the PPA to the download page. This means you can install a pre-built

Ubuntu package, using the normalapt-get install method.

• This change det fixes a problem where some systems (usually pseudo filesystems) report ENOSYS
instead of EACCES like any sane person expects.

Version 2.33 (2009-Dec-20)
• The email address for the mailing list has changed. See README or the web site for more information.

• There is a new file-size-statistics option, for hinky NFS server update latency.

• A bug has been fixed in the ˆC interrupt handler, it no longer deadlocks causing the processes to hang.

• A bug in the architecture handling has been fixed.

• This a number of 64-bit build issues have been fixed.

• The exit status is no longer printed for silent (not echoed) commands.

• The metering details are no longer printed for silent (not echoed) commands.

• The progress stars can now be enabled using the “set star ” statements within a cookbook.

• A bug has been fixed in the [collect] and [collect_lines] built-in functions. If a word (or line) was longer
than 1024 bytes, a buffer overrun occurred.A variable size buffer is now used.

• There is a new [strlen] built-in function, which may be used to obtain the length of a string.

• A bug has been fixed in the [substitute] function, it no longer infinite loops when the string to be replaced
is the empty string.

Version 2.32 (2008-Jul-29)
• The [options] function now includes the -nic option.

• There is now documentation in thecook(1) man page for thecook --page-width option.

Version 2.31 (2008-Feb-13)
• A build problem with the ./configure file has been fixed.

• There is a new "set no-ctime" flag, for coping with Aegis penchant for making and breaking hard links.

• The LICENSE file has been updated to match the licensing of the source code.

Version 2.30 (2007-Aug-21)
• Several build and portability problems have been fixed.

• Several typographical and spelling errors have been fixed in the User Guide.

• The license has been changed to GNU GPL version 3.

Version 2.29 (2007-Jun-22)
• There is a new variable for specifying the granularity of the file timestamps. Most POSIX systems will

support a value of 1. Rather than default to the worst case, the user can now specify the value in seconds
with a built-in cook variable.

• There is a new recipe option avaibale calledsymlink-ingredientsthat has the effect of creating symbolic
links for ingredients which are present on the search path, but not in the first directory in the search path.
This option creates the necessary symbolic links. This is for use with brain dead tools, like GNU
Automake, which don’t grok search paths.

Version 2.28 (2007-Jun-5)
• The [print] function has been enhanced so that it is now able to print more than one line, if you include a

newline \n escape.

Reference Manual Cook 3

Read Me(Cook) Read Me(Cook)

• A problem with the Makefile has been fixed.

• This change fixes a problem building the temp file name code which uses sprintf(). Basically, the code
now uses snprintf() which is better and makes the problem go away.

Version 2.27 (2007-Mar-13)
• An ANSI C compiler is now required to build Cook.

• A bug has been fixed in thecook_bomcommand’s−prefix and−suffix options.

• The fingerprint code is now more robust when faced with file modification time trickery by users.

• A few things have been improved for using Cook on Cygwin.

• Thec_incl −r option now understands.PSPIC directives, as well as.so directives.

Version 2.26 (2006-Jan-17)
• A number of build problems have been fixed.

• A bug has been fixed in the tell-position flag. It wasn’t actually giving the file name and line number
when executing commands if you used the "set tell-position " variants, only the−tell-
position command line option.

• The email address in the LSM file has been fixed,

• A bug has been fixed in thecook −fp-updatecommand, it would segfault in some cases.

• A bug has been fixed in the cookbook include file processing.

• A bug has been fixed in the negative flag setting (comamnd line options and "set" clauses).

• Thefind_command command now copes better with directories it is not allowed to access.

• A Java cookbook has been added to to the distribution.

• A bug has been fixed in the execution of some commands. If any words of the command had spaces in
them, it did not pass it to a shell to be executed, but instead constructed a command of a different shape
than the user expected.

Version 2.25 (2004-Jun-10)
• The./configurescript now understands the--with-nlsdir option, used to specify the install location of the

.mo files.

• A bug has been fixed on Linux (and it only ever ocurred on Linux) where cook would suddenly stop for
no reason with exit status 1.Turns out that sometimes fflush(stderr) returns an EAGAIN error.

• A bug has been fixed which caused thecook −scriptoption to produce invalid shell scripts when a recipe
body contained no statements.

• A bug has been fixed in the graph file pair generation, used to generate warnings about dangerous
#include-cooked contents.

• The metering output now includes elapsed times and percentages.

• There is a newtell-positionsetting, so that when Cook prints a command it is about to run, it includes the
file name and line nunmber of the command. This can be useful when debugging cookbooks.

• A bug has been fixed in the output line wrapping. Once again it adapts to the window width.

Version 2.24 (2003-Jul-17)
• A major problem with parallel execution and hangs has been fixed. Thetable indexed by process ID was

now growing correctly.

• Some words have been added to the User Guide about the SHELL environment variable, and the effects
of errors in the.profilefile.

• Building RPMs has been improved, and the spec file now uses more modern RPM features.

• Building on Cygwin has been improved.

4 Cook ReferenceManual

Read Me(Cook) Read Me(Cook)

• Building on AIX has been improved.

Version 2.23 (2003-May-01)
• Build problem encountered using newer bersions of GNU Bison mave been fixed.

• For Cook developers, there is now a .ae file on the web site.

• An error in the documentation of theerrokflag has been fixed.

Version 2.22 (2003-Feb-28)
• A small problem with fingerprints has been fixed.

• A tutorial has been contributed.

• You can now hav einternational characters in comments.

• A C++ cookbook has been added.

• A test failure on Cygwin has been fixed.

• The [read] and [read_lines] builtin functions have been added. See the Reference Manual for more
information.

Version 2.21 (2002-Aug-26)
• Thec_incl(1) command now accepts the −stripdot and −nostripdot options. These may be used to

control the removal of redundant leading dot directories.

• A bug has been fixed where cascade recipes failed to heed the stripdot setting.

• There is a new[stripdot] function, so that you can strip leading dot directories from file names
within functions.

• A bug has been fixed in how the builtin functions which manipulate build graphs were called. This fixed
a problem with freeing a string which had already been freed.

Version 2.20 (2002-Jun-06)
• There is a fix for the build problems caused by recent GNU Gettext releases.

• The fingerprint handling is now more robust, particularly when faced with files that move backwards in
time.

• There is a fix for the build problems caused by recent Bison releases.

Version 2.19 (2002-Feb-19)
• Some introduced with recent versions of GNU Bison have been fixed. Bison’s include file insulation

didn’t use YY in the insulating symbol (just to be completely inconsistent) and in another case a
namespace clash occurred for a function name.

• The generated Makefile has been improved, along with other small build and install improvements.

• A top-level fail statement how halts the parse as soon as it is executed. Thiswill make it more useful for
checking build environments.

• Documentation aboutcook_rsh(1) has been added to the Parallel chapter of the User Guide.

Version 2.18 (2001-Oct-15)
• A bug has been fixed in theingredients-fingerprintrecipe attribute. Itwas failing to save the fingerprint

cache file in some cases, and thus came to incorrect conclusions on following runs.

• The(exists)ingredients attribute has been fixed so that it no longer implies behavious rimilar toset
shallow.

• There is a newcook_rsh(1) program, for use with thehost-bindingrecipe attribute, which allows you to
load balance builds across classes of hosts. Seecook_rsh(1) and the Parallel chapter of the User Guide
for more information.

• Some build problems have been fixed on various platforms.

Reference Manual Cook 5

Read Me(Cook) Read Me(Cook)

• More keywords are now understood for M4 include directives.

Version 2.17 (2001-Apr-25)
• When using file fingerprints, the way the.cook.fpfile is written has been changed, so that the timestamp

of the containing directory is modified much less often. This is useul in combination with the
cook_bom(1) utility.

• A bug has been fixed under Cygwin, where archive members were not being fingerprinted correctly.

• A bug has been fixed in the[quote] function. Itnow quotes allsh(1), csh(1) andbash(1) special
characters correctly.

• A bug has been fixed in the[uptodate] function. Itnow works as advertised.

• There is a newingredients-fingerprintrecipe flag. This means that you can now cause a recipe to re-
trigger when the ingredients list changes. This is especially useful when a library has a file removed.

• The dependency graph can now hav ethe edge types specified. The “weak” edge type if useful for
managing links, and the “exists” edge type is useful for managing version stamps. See the User Guide
for more information.

Version 2.16 (2000-Oct-25)
• Thestringsetfunction now accepts a “+” operator. While union is implicit, the apparrently redundant

“+” operator is useful for cancelling the other operators.

• The “reason and fingerprint bug” has been fixed. Thiscaused a mysterious error message to appear
sometimes when using the −reason option incombination with fingerprints.

• The % and %n patterns are now allowed to match the empty string, provided they aren’t the first thing in
the pattern (otherwise undesirable absolute path problems can occur).

• Thec_incl(1) command now accepts “-” as a file name on the command line, meaning standard input.

• Some improvements have been made to the Cygwin support, extending the “.exe” automatic executable
suffix coverage to a couple more places.

• A bug in the “c” cookbook has been fixed, which was getting.h dependency files wrong.

Version 2.15 (2000-Apr-11)
• TheC_incl(1) problem with absolute paths has been fixed.

• A bug has been fixed which caused problems on Solaris and SGI, where Cook would report a No child
processes error.

Version 2.12 (2000-Mar-28)
• Thec_inclprogram now has a-quote-filenamesoption, which means that you can have filenames with

spaces and special characters in them.

• A bug in thec_inclprogram’s path flattening has been fixed.

• A small Y2K bug has been fixed in the date parsing used by thecooktime(1) command.

• A bug which caused the -parallel option to lose track of processes when you used [execute] in a recipe
body has been fixed.

• The restrictions on the placement of the placement of %0 in a pattern have been dropped; too many
people didn’t like it. Thisdoesnotbreak any cookbooks.

• Cook now copes with the absence of the HOME environment variable. Thiswas a problem for CGI
scripts.

Version 2.11 (1999-Nov-04)
• Numerous portability problems have been fixed in the configure and build.

• A bug has been fixed which prevented Cook from working correctly when run by some versions of
cron(8) andat(1).

6 Cook ReferenceManual

Read Me(Cook) Read Me(Cook)

• There is a newcook_bom --ignoreoption, allowing you to nominate file patterns that you don’t want in
the file lists.

• There is a new [__FUNCTION__] variable, which contains the name of the executing function, which
suppliments the existing [__FILE__] and [__LINE__] variables.

• Functions now hav elocal variables, just put the wordlocal on the left-hand-side of the first
assignment. Localvariables are reentrant and thread-safe.

Version 2.10 (1999-Sep-06)
• The[print] and[write] functions now work more sensably with the−SCript option.

• The fingerprint code has been improved. It now does considerably fewer redundant fingeprint
calculations, resulting is some very welcome speed improvements.

• The behaviour of the remote shell invocation to cope with rshd at the remote end failing to spawn a shell,
and it copes with the default shell at the remote end not being the Bourne shell.

• The−PARallel behaviour has been improved, so that it now looks for child process who have finished
more than it looks for recipes to run. This doesn’t change the semantics any, but it matches user
expectations far better (and results in shorter-lived zombie processes).

• Theset meterrecipe flag works once more. (It stopped working when the parallel modifications were
made, and mysteriously forgotten until now.)

• There are some changes made to the fingerprinting code to detect when files under ClearCase move
backwards in time (because the underlying file version is “uncovered”) meaning that the derived (object)
files need to be rebuilt.

• There is a new [mtime-seconds] function, similar to the [mtime] function, except that it returns seconds
since the epoch, rather than a human readable date. More useful to handing to [expr].

• A bug has been fixed on SGI IRIX which failed to cope with not being able to create directories because
they already exist.

• Ingredient recipes (ones with no body) may now hav ea double colon rather than a single colon, even
when there is more than on target specified. Some users may find this a more natural syntax for
ingredients recipes.

• The [expr] function now reports an error when given a number too big to represent, rather than quietly
returning wrong answers. The range of representable values depends on your system.

• Cook now works with GNU Regex correctly on Windows-NT.

Version 2.9 (1999-May-27)
• There is a new “for each” style looping construct. See the User Guide for more information.

• It is now possible to use regular expression patterns, instead of Cook’s native patterns. You can set this
for a whole cookbook or individual recipes. The default is to use Cook’s native patterns. SeetheFile
Name Patternschapter of the User Guide for more information.

• A bug which causedhost-bindingandsingle-threadto core dump has been fixed.

• All text file input now copes with CRLF sequences, so mixing NT and Unix builds on the one file server
no longer creates problems.

• Fingerprints are now cached per-directory, rather than one huge file for an entire directory tree. This is
more useful in recursive build and [search_list] situations.

• The [cando], [cook] and [uptodate] functions now return lists of successful files, rather than a simple
true/false result.

• The [in] and [matches] functions now return the list index (1 based) of the matching word. Seethe User
Guide for more information.

• There is a newcook -weboption, to print a HTML web page on the standard output, representing the
dependency graph. Thisis useful in documenting the build process, or debugging cookbooks.

Reference Manual Cook 7

Read Me(Cook) Read Me(Cook)

• There is a newcook --fingerprint-updateoption which scans the directory tree below the current
directory and updates the file fingerprints. This helps when you use another tool (such as RCS or
ClearCase) which alters the file but preserves the file’s modification time.

• There is a new [write] function for writing text files. This is useful for coping with Windows-NT’s
absurdly short command lines.

Version 2.8 (1999-Feb-01)
• The remotehost-bindingcode has been improved to cope with staggeringly long commands (which

tended to makersh(1) barf), and also wierd and wonderfull $SHELL settings.

• The #include directive now accepts more than one file, to be more symmetric with the #include-cooked
directive.

• A bug has been fixed where cooktime gav ean incorrect error message if setting the file’s utimes failed.

• The configure script has been improved for use on non-UNIX systems.

• There is a new builtin [cook] function, a natural companion for the [cando] and [uptodate] functions. See
the Cook User Guide for more information.

Version 2.7 (1998-Dec-30)
• There is a newcook_bom(1) command (Bill Of Materials). This may be used to efficiently scan a

directory tree for files, so that ingredients lists may be produced automatically. Seecook_bom(1) for
more information.

• There is a new assign-append statement, so you can now use+= to append to the value of a variable. See
the User Guide for more information.

• There is a newgate-firstrecipe flag, which causes the recipe gate to be evaluated before the ingredients
are derived, rather than after.

• Thec_incl(1) command has a new --interior-files option, so you can tell it about include files that don’t
exist yet. This is helpful when they are generated,i.e. they are interior files of the dependency graph,
hence the option name.

• There is a new [interior-files] function, which returns the files interior to the dependency graph
(constructed by a recipe), and a complementatry [leaf-files] function, which returns the leaf files of the
dependency graph (not constructed by any recipe).

• There is a new “no-include-cooked-warning” flag, if you want to suppress the warnings about derived file
dependencies in include-cooked files.

• There is a newrelative_dirnamebuilt-in function, similar to the existingdirnamefunction, but it returns
“.” f or files with no directory part, rather than the absolute path of the current directory.

Version 2.6 (1998-Nov-09)
• Cook has been ported to Windows-NT using CygWin32. Seethe BUILDING file for details.

• There are two new functions (dos-pathandun-dos-path) for use when invoking non-CygWin32
WindowsNT programs. See the Cook User Guide for more information.

• Fingerprints now work meaningfully with directories.

• A bug has been fixed in the pattern matching code. It would sometimes cause core dumps.

• A bug involving fingerprints in combination with the search_list has been fixed. Cookwould
occasionally conclude that a shallow target was up-to-date when a shallow ingredient was edited to be
the same as a deeper ingredient.

• A bug has been fixed in cooktime. It would use an inappropriate timezone offset on some systems.

Release 2.5 (1998-Sep-02)
• A problem which caused some tests to fail on Solaris’ tmpfs now has a work-around.

• The “setenv” statement has finally been documented. It’s been in the code tfor years, but I could never
figure out why folks weren’t using it!

8 Cook ReferenceManual

Read Me(Cook) Read Me(Cook)

• A number of build problems on various systems have been fixed.

Release 2.4 (1998-Jul-21)
• There is a new form of dependencies. Known as cascaded dependencies, they allow the user to associate

additional dependencies with an ingredient.For example, a C source file can be associated with
cascaded include dependencies. This means that all files which depend on the C source file, also depend
on the included files. The Cook Reference Manual has been updated to include this new functionality.

• There is a new section of the Cook Reference Manual giving suggestions and a template for building
large projects.

• There is a new[expr] function, to calculate simple arithmetic expressions. Seethe User Guide for
more information.

• There is a new c_incl -no-recursion option, to prevent scanning nested includes. This is of most use
when combined with the new cascade dependencies.

• There is a new[exists-symlink] function, which may be used to test for the existence of symlinks.
The[exists] function follows symbolic links, and is not useful when manipulating the links
themselves.

Release 2.3 (1998-May-20)
• There are 6 new special variables: graph_leaf_file, graph_leaf_pattern, graph_interior_file,

graph_interior_pattern, graph_exterior_file and graph_exterior_pattern. Thesevariables may be used to
define the leaves of the derivation graph (theacceptforms), and non-leave of the graph (thereject forms).
This can make the graph derivation faster, and greatly improves some error messages. This functionality
is of most use when you have an exact source file manifest,e.g.from a software configuration
management system. See the User Guide for more information.

• The %0 pattern element has been extended to permit the matching of absolute paths.

Release 2.2.2 (1997-Dec-10)
• There is a new statement type, allowing functions to be invoked as subroutines in any place where a

command may be invoked. Seethe User Guide for more information.

• A number of problems with installing Cook have been fixed. Thisincludes changing -mgm to -mm for
the documnetation formatting, and missing include dependencies and missing rules for installing the man
pages.

• There is a new “print” builtin function. When combined with the new function call statement, this
provides a way of printing information without invoking “echo”. See the User Guide for more
information.

• Cook now defaults the language to “en” internally if neoither the LANG nor LANGUAGE environment
variable was set. This gives better error messages.

Release 2.2.1 (1997-Nov-04)
• A bug was fixed where a recipe would fail to trigger if some, but not all, of its targets were not present,

but the existing targets were up-to-date. This bug was introduced in the inference engine re-write.

Release 2.2 (1997-Oct-31)
• Thec_inclutility has had two new languages added. It now understands M4, and also has an

“optimistic” language which can scan many assemblers and even some high-level languages. See
c_incl(1) for more information.

• Thec_inclutility also has a new--no-absolute-path option, to supress scanning and reporting of
such files. Seec_incl(1) for more information.

• There is a new warning added for dependencies on derived ingredients when this information resides
solely in derived cookbooks included using the#include-cooked facility. This assists in detecting
problems which may preclude a successful “clean” build.

• This release adds a number of cookbook functions to the distrubuted cookbooks. These may be used by
adding a

Reference Manual Cook 9

Read Me(Cook) Read Me(Cook)

#include "functions"
line to your cookbook. See the Cook User Guide for more information.

• This release fixes a bug where the graph walking phase ignored interrupts until something went wrong.

• This release fixes a bug wheremake2cookdid not correctly translate “%” into sematicly equivalent Cook
constructs.

Release 2.1 (1997-Oct-12)
• It is possible to specify that a command is to be executed on a specific machine or machines. This can be

useful for restrictively licensed third party software tools.

• The parallel functionality has been extended to implement a virtual parallel machine on a LAN.

• Fingerprinting has been enhanced to be more informative, and to adjust file modification times so that
subsequest fingerprint-less runs will not find too much to do.

• The#line directive is now available, for better diagnostics of generated cookbooks. The__FILE__
and__LINE__ variable are also available.

• There is now a thread-id variable, to obtain a thread-unique value for use in generating temporary
file names or variable names,etc, which are unique to a thread.

• Added thewordlist function and thecommand-line-goals variable for compatibility with GNU
Make. Updatedmake2cookto understand them.

Release 2.0.1
• An install problem in the generated Makefile, to do with the the manuals, has been fixed.

Release 2.0 (1997-Sep-11)
Version 1.26 (2005-Jan-17)

Development of this release was generously supported by Endocardial Solutions, Inc.

• Parallel execution is now supported. Ifyou have a multi-processor machine, you can specify the number
of parallel processing threads with the -PARallel command line option, or via the[parallel_jobs]
variable. Byusing the[os node]function, the[parallel_jobs] variable can be set appropriately for the
host machine automatically by the cookbook. There is a newsingle-thread keyword to support
single threading recipes which cannot be paralleized.

• The dependency graph is now constructed differently. This gives exactly the same results, but the order
of evaluation of recipes is a little more random. This different graph construction is able to give better
error messages, better -Reason information, and allows the introduction of parallel recipe evaluation if
you have a multi-processor computer.

• Recipes which usec_incl(1) to calculate their dependencies in the ingredients section will need a small
modification − they will need to use the--Absent-Program-Ignore option. Seethe User Guide
for more information.

• You can now print pair-wise file dependencies by using the -PAirs option.

• You can now print a shell script which approximates the actions cook would take when building the
targets by using the -SCript option.

• There is a new “shallow” recipe flag, allowing you to specify that the targets of a recipe are required to
be in the top-level directory, not further down thesearch_list path.

• You may now define user-written functions in the cookbook to supplement the built-in functions.Your
functions will be called in the same manner as built-in functions. There are newfunction and
return keywords to support definition of functions.

• The progress indicators produced by the -STar option now hav emore detail:+ means that the cook book
is being read,* means that the graph is being constructed, and# means that the graph is being walked.

Release 1.11 (1997-Jun-14)
• Fixed a bug in the pattern matching which caused %0 (when not at the start of the pattern) to fail to

match the empty string.

10 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

• The install locations have been changed slightly to conform better to the GNU filesystem standards, and
to take advantage of the additional install location options of the configure scripts generated by GNU
Autoconf.

Release 1.10
• Error messages have been internationalized. It is now possible to get error messages in your native

language, if it is supported.

• The cook command now accepts a -no-include-cooked option, to disable any cooking of the #include-
cooked files.

• The cook -TRace option has been renamed -Reason. This is thought to more accurately reflect what it
does.

• The cook -Reason output has been changed to cite cookbook file names and line numbers, in order to be
more useful. In addition, more reason messages carry location information.

Release 1.9
• There are new “f77” and “g77” cookbooks, to allow Fortran sources, in addition to C sources.

• There is a new [options] function, which expands to the current settings of the command line options.
This is useful for recursive cook directory structures. See the Reference Manual for more information.

• There is a new “recursive” cookbook, to assist in constructing recursive cook structures.

• The find_libsprogram now understands about shared libraries.

• A bug which made the builtin [glob] function far to generous has been corrected.

• A bug which caused some expression evaluation errors to be ignored has been corrected.

• The “set update” flag has been re-named the “set time-adjust” flag, to more closely describe what it does.
The old name will continue to work indefinitely.

• There is a new “set time-adjust-back” flag, which sets recipe target times to be exactly one (1) second
younger than the youngest ingredient. This is usually an adjustment into the recent past.

Release 1.8
• The fingerprint code has been improved to work better with the search_list functionality.

• The diagnostics have been improved when cook “don’t know how”. A list of attempted ingredients is
included in the error message.

• There is a newmkdir recipe flag. This creates recipe target directories before the recipe body is run. See
the Reference Manual for more information.

• There is a newunlink recipe flag. This unlinks recipe targets before the recipe body is run. See the
Reference Manual for more information.

• There is a newrecurserecipe flag. This overrides the infinite loop recipe heuristic, allowing recipes to
recuse upon themselves if one of their ingredients matches one of their targets. Seethe Reference
Manual for more information.

Release 1.7
• The AIX code to handle archive files has been fixed.

• The fingerprint code now works on 64-bit systems.

Release 1.6
• Fixed a bug in the leading-dot removal code, and added an option to make it user-settable. Fixed a bug in

the search_path depth code.

Release 1.5
• Thec_incl program now correctly prints the names of absent include files, causing them to be cooked

correctly in a greater number of cases.

• Recipes with no ingredients are now only applied if the target is absent.To still use the previous
behaviour, use the "set force" clause on the recipe.

Reference Manual Cook 11

Read Me(Cook) Read Me(Cook)

• It is now possible to supplement the last-modified time with a fingerprint, so cook does even fewer
unnecesary recompilations than before. Put the statement
set fingerprint;

somewhere near the top of yourHowto.cookfile for this to be the default for your project.

• There is a new form of include directive:
#include-cooked filename...

When files are included in this way,cookwill check to make sure they are up-to-date. If not, they will be
cooked, and thencookwill start again and re-read the cookbook. This is most often used for maintaining
include-dependency files.

• Cook now configured using a program calledconfigure, distributed with the package. Theconfigure
program is generated by GNU Autoconf. See theBUILDING file for more details.

• The semantics ofsearch_list have been improved. It is now guaranteed that when ingredients change
they result in targets earlier in thesearch_list being updated.

• There is now a make2cooktranslator, to translateMakefilefiles intoHowto.cookfiles. Mostof the GNU
Make extensions are understood. There is no exact semantic mapping betweenmakeandcook,so
manual editing is sometimes required. Seemake2cook(1) for more information.

• Cooknow understands archive member references, in the same format as used bymake, et al. Archive
member references benefit from stat caching and fingerprinting, just as normal files do.

Release 1.4
• Thecookprogram is now known to work on more systems. Most changes were aimed at improving

portability, or avoiding problems specific to some systems.

• The GNU long option name convention is now understood. Optionnames forcookwere always long, so
this mostly consists of ignoring the extra leading ’-’. The "--foo=bar" convention is also understood for
options with arguments.

• Tests which fail now tell you what it was they were testing for. This will give the user some idea of what
is happening.

12 Cook Reference Manual

Build(Cook) Build(Cook)

NAME
cook − a file construction tool

SPACE REQUIREMENTS
You will need about 5MB to unpack and build theCookpackage. Your mileage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of Cook.

Please note: if you install these packages into/usr/local(for example) you must ensure that the./configure
script is told to also look in/usr/local/includefor include files (CFLAGS), and/usr/local/lib for library files
(LDFLAGS). Otherwisethe./configurescript will incorrectly conclude that they hav enot been installed.

ANSI C compiler
You will need an ANSI C compiler to be able to compile cook. If you don’t hav eone, you may
wish to consider installing the GNU C compiler, it’s free.

GNU Gettext
TheCookpackage has been internationalized. It can now print error messages in any of the
supported languages. In order to do this, the GNU Gettext package must be installedbeforeyou
run the configure script as detailed in the next section. This is because the configure script looks
for it. On systems which use the GNU C library, version 2.0 or later, there is no need to explicitly
do this as GNU Gettext is included. Remember to use the GNU Gettext configure--with-gnu-
gettextoption if your system has native gettext tools.

GNU rx
Cook needs regular expressions to operate correctly. Get a copy from your nearest GNU mirror.
On systems which use the GNU C library, version 2.0 or later, there is no need to explicitly do
this as GNU rx is included.

GNU Groff
The documentation for theCookpackage was prepared using the GNU Groff package. This
distribution includes full documentation, which may be processed into PostScript or DVI files at
install time − if GNU Groff has been installed.You must use GNU Groff version 1.15 or later.

On Solaris, you may need to edit theMakefileto change the groff−manand−mmoptions to
−mgan and−mgminstead.

Bison If your operating system does not have a nativeyacc(1) you will need to fetch and install GNU
Bison in order to build theCookpackage.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential.

The GNU FTP archives may be found atftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
TheCook package is configured using theconfigureprogram included in this distribution.

Theconfigureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates theMakefileandcommon/config.hfiles. It also creates a shell script
config.statusthat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containingCook’s source code and type
% ./configure
...lots of output...
%

If you’re usingcshon an old version of System V, you might need to type
% sh configure
...lots of output...
%

instead to prevent cshfrom trying to executeconfigureitself.

Reference Manual Cook 13

Build(Cook) Build(Cook)

Runningconfiguretakes a minute or two. Whileit is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, runconfigureusing the quiet option; for example,

% ./configure --quiet
%

There is a known problem with GCC 2.8.3 and HP/UX.You will need to setCFLAGS = -O in the
generated Makefile. (Theconfigure script sets it toCFLAGS = -O2 .) Thisis because the code
optimization breaks the fingerprints. If test 46 fails (see below) this is probably the reason.

To compile theCook package in a different directory from the one containing the source code, you must
use a version ofmakethat supports theVPATH variable,such asGNU make. cd to the directory where you
want the object files and executables to go and run theconfigurescript. configureautomatically checks for
the source code in the directory thatconfigureis in and in.. (the parent directory). If for some reason
configureis not in the source code directory that you are configuring, then it will report that it can’t find the
source code. In that case, runconfigurewith the option--srcdir= DIR, whereDIR is the directory that
contains the source code.

By default,configurewill arrange for themake install command to install theCook package’s files in
/usr/local/bin, /usr/local/lib, /usr/local/shareand/usr/local/man. There are a number of options which
allow you to control the placement of these files.

--prefix= PA TH
This specifies the path prefix to be used in the installation. Defaults to/usr/localunless otherwise
specified.

--exec-prefix= PA TH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

--bindir= PA TH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/binunless otherwise specified.

--datadir= PA TH
This directory contains installed data, such as the documentation and cookbooks distributed with
Cook. Ona network, this directory may be shared between all machines; it may be mounted
read-only. Defaults to${prefix}/share/cookunless otherwise specified.A ‘ ‘cook’’ directory will
be appended if there is none in the specified path.

--libdir= PA TH
This directory contains installed data. On a network, this directory may be shared between
machines with identical hardware and operating systems; it may be mounted read-only. Defaults
to ${exec_prefix}/lib/cookunless otherwise specified.A ‘ ‘cook’’ directory will be appended if
there is none in the specified path.

--mandir= PA TH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to${prefix}/manunless otherwise
specified.

--with-nlsdir= PA TH
This directory contains the install error message catalogues. On a network, this directory may be
shared between machines with identical hardware and operating systems; it may be mounted
read-only. Defaults to--libdir unless otherwise specified.

configureignores most other arguments that you give it; use the--help option for a complete list.

14 Cook Reference Manual

Build(Cook) Build(Cook)

On systems that require unusual options for compilation or linking that theCookpackage’sconfigurescript
does not know about, you can give configureinitial values for variables by setting them in the environment.
In Bourne-compatible shells, you can do that on the command line like this:

$ CC=’gcc -traditional’ LIBS=-lposix ./configure
...lots of output...
$

Here are themakevariables that you might want to override with environment variables when running
configure.

Variable: CC
C compiler program. The default iscc.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to useCFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. The default isinstall if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form-l foo -l bar. Theconfigurescript will append to this, rather
than replace it. It is common to useLIBS=-L/usr/local/lib to access other installed
packages.

Variable: NLSDIR
Similar to the--with-nlsdir option.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING COOK
All you should need to do is use the

% make
...lots of output...
%

command and wait. Whenthis finishes you should see a directory calledbin containing nine files:c_incl,
cook, cookfp, cooktime, find_libs, make2cookandroffpp.

cook cookprogram is a file construction tool, and may invoke the following tools in some of its
recipes.

cookfp Thecookfpprogram is a utility distributed withCookwhich calculates the fingerprints of files. It
uses the same algorithm as the fingerprints used bycook itself. For more information, see
cook(1) andcookfp(1).

cooktime
Thecooktimeprogram is a utility distributed withCookwhich allows the time-last-modified and
time-last-accessed stamps of files to be set to specific times.For more information, see
cooktime(1).

c_incl Thec_incl program is a utility distributed withCookwhich examines C files and determines all
the files it includes directly and indirectly. For more information, seec_incl(1).

find_libs
The find_libsprogram is a utility distributed withCookwhich tracks down the names of library
files, given cc-style library options (-L and -l).For more information, seefind_libs(1).

make2cook
Themake2cookprogram is a utility to help convert Makefiles into cookbooks. An exact 1:1
semantic mapping is not possible, so some addition editing is often required.

Reference Manual Cook 15

Build(Cook) Build(Cook)

roffpp Theroffpp program is a utility distributed withCookwhich acts as a preprocessor for *roff fi les,
removing source (.so) directives. It accepts include search path command line options just as
/lib/cppdoes. For more information, seeroffpp(1).

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%

command. To remove all of the above files, and also remove the Makefileandcommon/config.hand
config.statusfiles, use the

% make distclean
...lots of output...
%

command.

The fileetc/configure.in is used to createconfigureby a GNU program calledautoconf. You only need to
know this if you want to regenerateconfigureusing a newer version ofautoconf.

TESTING COOK
TheCookprogram comes with a test suite.To run this test suite, use the command

% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests

should appear at the end of the make.

Known Problems
If test 46 fails, this is often caused by optimization bugs in gcc. Edit theMakefile to change-O2 to -O ,
and deletecommon/fp/*.o to cause them to be re-built. Make and test again.

If you are using Sun’s tmpfs file system as your /tmp directory, some tests will fail. Thisis because the
tmpfs file system does not support file locking. Set the COOK_TMP environment variable to somewhere
else before running the tests. Something like

% setenv COOK_TMP /usr/tmp
%

is usually sufficient if you are using C shell, or
$ COOK_TMP=/usr/tmp
$ export COOK_TMP
$

if you are using Bourne shell. Remember, this must be done before running the tests.

Tests 121 and 122 can sometimes have problems on Solaris, where they giv e false negatives. If you work
out why, please let the author know.

INSTALLING COOK
As explained in theSITE CONFIGURATIONsection, above, theCookpackage is installed under the
/usr/local tree by default. Usethe--prefix= PA TH option toconfigureif you want some other path.
More specific installation locations are assignable, use the--help option toconfigurefor details.

All that is required to install theCookpackage is to use the
% make install
...lots of output...
%

command. Controlof the directories used may be found in the first few lines of theMakefilefile and the

16 Cook Reference Manual

Build(Cook) Build(Cook)

other files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather than
attempting to do this by hand.

PRINTED MANUALS
The easiest way to get copies of the manuals is to get thecook.2.34.rm.ps.gzandcook.2.34.ug.ps.gzfiles
from the archive site. Theseare compressed PostScript files of the Reference Manual and User Guide,
respectively. The Reference Manual (about 36 pages) contains the README file, the BUILDING file and
internationalization notes, as well as all of the manual pages for all of the commands. The User Guide
(about 56 pages) tells you how to use the Cook package.

This distribution contains the sources to all of the documentation forCook. The author used the GNU groff
package and a postscript printer to prepare the documentation. If you do not have this software, you will
need to substitute commands appropriate to your site.

If you have the GNU Groff package installedbeforeyou run theconfigurescript, theMakefilewill contain
instructions for constructing the documentation. If you already used themakecommand, above, this has
already been done. The following command

% make groff_all
...lots of output...
%

can be used to do this explicitly, if you managed to get to this point without doing it. Please note that there
may be some warnings from groff, particularly for the.txt files; this is normal.

Once the documents have been formatted, you only need to print them. The following command
% lpr lib/en/refman.ps lib/en/user-guide.ps
%

will print the English PostScript version of the Reference Manual and the User Guide.Watch themake
output to see what other versions are available.

GETTING HELP
If you need assistance with theCookprogram, please do not hesitate to contact the author at

Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% cook -version
cook version 2.34.D001
...warranty disclaimer...
%

command. Pleasedo not send this example; run the program for the exact version number.

In thecommon/main.hfile, there is a define ofDEBUG in comments. If the comments are removed,
extensive debugging is turned on. This causes some performance loss, but performs much run-time
checking and adds the-TRACIng command line option.

When the-TRACing option is followed by one or more file names, it turns on execution traces in those
source files. It is best to put this option on the end of the command, so that the names of the files to be
traced are not confused with any other filenames or strings on the command line.

Reference Manual Cook 17

Build(Cook) Build(Cook)

WINDOWS-NT
It is possible to build Cook for Windows-NT. I have done this using the Cygnus freeware CygWin32
system, and I believe it has also once been done using the commercial NutCracker system. This document
only describes the CygWin32 port.

The Source
You need to FTP the CygWin32 system from Cygnus. It can be found at

http://sourceware.cygnus.com/cygwin/
and then follow the links. The version I used was B20.1.

Mounting Things
You need to mount a directory onto/tmp , or lots of things, and especiallybash(1), don’t work. If you are
in a heavily networked environment, like me, you need to know that using a networked drive for /tmp just
doesn’t work. I have no idea why. Use

mount C:/temp /tmp
instead. (Orsome other local drive.)

Just a tip for all of you who, like me, know UNIX much better than you know Windows-NT: the left-hand
mount argument needs to be specified with a drive letter (e.g.C:) rather than with a double slash (e.g. not
//C) unless its Windows-NT name starts with \\.

You need to mount the Cygnus bin directory at/bin , otherwise shell scripts that start with#!/bin/sh
don’t work, among other things. This includes the./configure script, and the scripts it writes (e.g.
config.status).

mountCygnus-Dir /H-i386-cygwin/bin /bin
You will want to mount your various network drives onto the same places they appear on your UNIX hosts.
This means that your cookbooks will work without change, even if they contain absolute paths. And your
users don’t need to learn two names for all the source files.

Don’t forget your home directory. The trick is to set HOME in the cygnus.bat file, before bash starts.
(How you do this with one batch file and multiple users I haven’t yet figured out.)

You also need to set the LOGNAME and USER environment variables appropriately, or test 14 will fail.

Mounts persist across Cygwin sessions. They are stored in a registry file somewhere. You will not need to
do all this every time! ore recent Cygwin versions don’t need this at all.

Configure
The configure and build step should be the same as for UNIX, as described above. All the problems I
encountered were to do with getting the mounts just right. (But expect it to be dog slow compared to Linux
or FreeBSD on the same box.)

The configure step is almost the same as for UNIX.I know you are itching to get typing, but read through
to the install section before you configure anything.

bash$./configure
...lots of output...
bash$

Build
The build step is exactly the same as for UNIX, and you shouldn’t notice any difference...

bash$ make
...lots of output...
bash$

Test
All of the tests should pass, you only need to run them to convince yourself the build worked... (aconstant
surprise to me, I must say!)

bash$ make sure
...lots of output...
Passed All Tests
bash$

18 Cook Reference Manual

Build(Cook) Build(Cook)

If test 12 fails, it probably means you don’t hav e/bin right.

Install
Installing the software works as usual, though you need to make some choices right at the start (I told you
to read this all the way through first). If you want to use the ‘‘/usr/local’’ p refix (or any other install prefix)
you mount it right at the start.For anything other than the ‘‘/usr/local’’ default prefix, you also needed to
give a ‘‘--prefix=blahblah’’ argument to the configure script, right at the start.

bash$ make install
...lots of output...
bash$

COPYRIGHT
cookversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

TheCookpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

It should be in theLICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 19

Internationalization(Cook) Internationalization(Cook)

NAME
Internationalization

DESCRIPTION
The Cook package has gone international; it can now speak many languages. Thisis accomplished by
using the GNU Gettext library and utilities. In order to do this, is is necessary to install GNU Gettext prior
to configuring, making and installing the Cook package, as described in theBUILDING file.

Internationalization
This is the process of identifying all of the error messages in the source code, and providing error message
catalogues in a variety of languages. The error message identification was performed by the Cook
package’s author, and the various GNU translation teams provided the translations. Users of the Cook
package do not need to do anything to internationalize it, this has already been done.

Localization
The programs in the Cook package are "localizable" when properly installed; the programs they contain can
be made to speak your own native language.

By default, the Cook package will be installed to allow translation of messages. It will automatically detect
whether the system provides a usable ‘gettext’ function.

INSTRUCTIONS FOR USERS
As a user, if your language has been installed for this package, you only have to set the ‘LANG’
environment variable to the appropriate ISO 639 two-letter code prior to using the programs in the package.
For example, let’s suppose that you speak German. At the shell prompt, merely execute

setenv LANG de
(in ‘csh’), or

LANG=de; export LANG
(in ‘sh’). This can be done from your.cshrcor .profilefile, setting this automatically each time you login.

An operating system might already offer message localization for many of its programs, while other
programs have been installed locally with the full capabilities of GNU Gettext. Usingthe GNU Gettext
extended syntax for the ‘LANG’ environment variable may break the localization of already available
through the operating system. In this case, users should set both the ‘LANGUAGE’ and ‘LANG’
environment variables, as programs using GNU Gettext give preference to the ‘LANGUAGE’ environment
variable.

For example, some Swedish users would rather read translations in German when Swedish is not available.
This is easily accomplished by setting ‘LANGUAGE’ to ‘sv:de’ while leaving ‘LANG’ set to ‘sv’.

DIRECTORY STRUCTURE
All files which may require translation are located below the lib directory of the source distribution. It is
organized as one directory belowlib for each localization. Localizations include all documentation as well
as the error messages.

Localization Directory Names
Each localization is contained in a sub-directory of thelib directory, with a unique name. Each localization
sub-directory has a name of the form:

localization
language

- territory . codeset

language is one of the 2-letter names from the ISO 639 standard. Seehttp://www.ics.uci.edu/pub/ietf/-
http/related/iso639.txtfor a list.

territory is one of the 2-letter country codes from the ISO 3166 standard. Seeftp://rs.internic.net/-
netinfo/iso3166-countrycodesfor a list.

20 Cook Reference Manual

Internationalization(Cook) Internationalization(Cook)

codeset is one of the codeset names defined in RFC 1345. This simplifies the task of moving
localizations between charsets, because GNU Recode understands them. See
http://info.internet.isi.edu/1s/in-notes/rfc/files/rfc1345.txtfor a list.

Here are some examples of localization names:

Name Description

en.ascii English,ASCII encoding
en_us.ascii Englishwith US spelling
de.latin1 German,Latin-1 encoding

Localization Directory Contents
Each localization sub-directory in turn contains sub-directories. These are:

Directory Contents

LC_MESSAGES Theerror message (PO) files
building TheBUILDING file
man1 Thesection 1 manual entries
readme TheREADME file
refman TheReference Manual
user-guide TheUser Guide

The structure is identical below each of the localization directories. The sub-directories of all localizations
will have the same names.

INSTRUCTIONS FOR TRANSLATORS
When translating the error messages, all of the substitutions described incook_sub(5) are also available.
Substitution variable names and function names may be abbreviated, in the same way that command line
options are abbreviated, but abbreviation should probably be avoided. Substitutionnames willneverbe
internationalized, otherwise the substitutions will stop working, Catch-22.

While Cook was written by an English speaker, the English localization is necessary, to translate the ‘‘terse
programmer’’ style error messages into something more user friendly.

Messages which include command line options need to leave the command line options untranslated,
because they are not yet internationalized, though they may be one day.

Each LC_MESSAGES directory within each localization contains a number of PO files. There is one for
each program in the Cook package, plus one calledcommon.po containing messages common to all of
them. TheMO file for each program is generated by naming the program specific PO file and also the
common PO file.

Reference Manual Cook 21

C_INCL(1) C_INCL(1)

NAME
c_incl - determine dependencies

SYNOPSIS
c_incl [option...] filename
c_incl -Help
c_incl -VERSion

DESCRIPTION
Thec_incl program is used to traverse source files looking for include dependencies suitable for
[collect] ion or#include-cooked -ing by cook.

The filename ‘‘-’’ is understood to mean the standard input. When you use this file name, caching is
ignored.

Several input languages are supported, see the options list for details.

OPTIONS
The following options are understood.

-C The source file is a C source file. It is assumed that it will have the dependencies resolved by the
cpp(1) command. The same include semantics as thecpp(1) command will be employed. Thisis
the default. Thisis short-hand for ‘‘--language=c’’

--Language=name
This option may be used to specify the language of the source file. Know names include ‘‘C’’,
‘‘ M4’’, ‘‘optimistic’ ’ and ‘‘roff’ ’.

The ‘‘optimistic’’ l anguage will take on almost anything. It accepts aninclude keyword in any
case, including mixed, with leading white space, but at most one leading punctuation character. It
assumes that the filename follows the include keyword and does not contain white space, and
does not start or end with punctuation characters (it strips off any it may find). The rest of the
line is ignored. The drawback is that it will sometimes recognise commands and other text as
unintended include directives, hence the name. This is often used to recognise include directives
in a wide variety of assembler input.

-Roff The source file is a *roff source file. It is assumed that it will have the dependencies resolved by
theroffpp(1) command. The same include semantics as theroffpp(1) command will be
employed. Thisis short-hand for ‘‘--language=roff’ ’

-Verbose
Tell what is happening.

-I path
Specify include path, a lacc(1).

-I-
Any directories you specify with-I options before the-I- option are searched only for the case of
#include "file"; they are not searchedfor #include <file>.

If additional directoriesare specified with-I options after the-I- , these directories are searched
for all #includedirectives. (Ordinarilyall -I directories are used this way.)

In addition, the-I- option inhibits theuse ofthe current directory (where the current input file
came from) as the first search directory for#include "file". There is no way to override this effect
of -I-. With -I. you can specify searching the directory which was current when c_incl was
invoked. Thatis not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

The-I- option does not inhibit the use of the standard system directories for header files. Thus,
-I- and-No_Systemare independent.

22 Cook Reference Manual

C_INCL(1) C_INCL(1)

-Absolute_Paths
This option may be used to allow absolute paths in the output. This is usually the default.

-No_Absolute_Paths
This option may be used to exclude absolute paths from the output.

-Absent_Local_Ignore
For files included using a#include ’’filename.h’’directive, ignore the file if it cannot be found.

-Absent_Local_Mention
For files included using a#include ’’filename.h’’directive, print the file name even if the file
cannot be found. This is the default (it probably needs to be built).

-Absent_Local_Error
For files included using a#include ’’filename.h’’directive, print a fatal error if the file cannot be
found.

-Absent_System_Ignore
For files included with a#include <filename.h>directive, ignore the file if it cannot be found.
This is the default (it was probably ifdef’ed out).

-Absent_System_Mention
For files included with a#include <filename.h>directive, print the file name even if the file
cannot be found.

-Absent_System_Error
For files included with a#include <filename.h>directive, print a fatal error if the file cannot be
found.

-Absent_Program_Ignore
If the file named on the command line cannot be found, behave as if the file were found, but was
empty.

-Absent_Program_Error
If the file named on the command line cannot be found, print a fatal error message. This is the
default.

-Escape_Newlines
This option may be used to request that newlines in the output are escaped with backslash (‘‘\’’)
characters.

-Help
Give information on how to usec_incl.

-EXclude filename
This option may be used to nominate include file names which are not to be used.

-VERSion
Tell what version ofc_incl is being run.

-Interior_Files filename...
This option may be used to tellc_inclabout include files which don’t exist yet. This is because
they are interior to the dependency graph, butcook(1) hasn’t finished walking it yet. Often used
with Cook’s[interior-files] function. (Note: thefilenamelist has an arbitrary number of
files; it ends at the next option or end-of-line, so you need to be careful where you put the input
filename.)

-No_System
Do not search the/usr/includedirectory. By default this is searched last. This option implies the
-No_Absolute_Paths option, unless explicitly contradicted.

-CAche
This option may be used to turn caching on. This is the default.

Reference Manual Cook 23

C_INCL(1) C_INCL(1)

-No_Cache
This option may be used to turn caching off.

-PREfix string
This option may be used to print a string before any of the filenames are printed. It will not be
printed if no file names are printed.

-Quote_FileNames
This option may be used to havec_inclquote filenames. This permits filenames to contain
characters which are special to Cook, including spaces.

-SUFfix string
This option may be used to print a string after all of the filenames are printed. It will not be
printed if no file names are printed.

-Output filename
This option may be used to specify the output file. Defaults to the standard output if not set.

-No_Source_Relative_Includes
This option will give a fatal error if a#include ’’filename.h’’directive is used. Thisis necessary
when you are using Cook’ssearch_list functionality to stitch together a baseline and a
private work area.

-RECursion
This option may be used to specify that nested include files are to be scanned, so that their
includes may also be discovered. Thisis the default.

-No_RECursion
This option may be use to specify that nested include files arenot to be scanned. This option is
recommended for use with the Cookcascade-for recipes. Thisoption implies -No_Cache,
unless a-Cacheoption is specified.

-Remove_Leading_Pathpath
This option may be used to remove path prefixes from the included filenames. May be used more
than once. This is necessary when you are using Cook’ssearch_list functionality to stitch
together a baseline and a private work area; usually as ‘‘[prepost "-rlp=" ""
[search_list]] ’’

-STripdot
This option may be used to specify that leading redundant dot directories are to be removed from
paths before processing. This is the default.

-No_STripdot
This option may be used to specify that leading redundant dot directories need not be removed
from paths before processing. (Some path flattening may still occur.)

-Substitute_Leading_Pathfrom to
This option may be used to modify path prefixes from the included filenames. May be used more
than once. This is necessary when you are performing heterogeneous builds in the same directory
tree. Byusing an ‘‘arch’’ variable to hold the architecture, and placing each architecture’s objects
in a separate directory tree, this option may be used as ‘‘-slp [arch] "’[arch]’" ’’ (The
outer quotes protect from Cook, the inner quotes protect from the shell.) If you need more
intricate editing, usedsed(1).

Any other options will generate an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The

24 Cook Reference Manual

C_INCL(1) C_INCL(1)

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forc_incl are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

CACHING
The caching mechanism use by thec_incl program caches the results of searching files for include files (in
a file called.c_inclrc in the current directory). The cache is only refreshed when a file changes.

The use of this cache has been shown to dramatically increase the performance of thec_incl program.
Typically, only a small proportions files in a project change between builds, resulting in a very high cache
hit rate.

When using caching, always use the same command line options, otherwise weird and wonderful things
will happen.

The .c_inclrc file is a binary file. If you wish to rebuild the cache, simply delete this file with therm(1)
command. Beinga binary file, the.c_inclrc file is not portable across machines or operating systems, so
you will need to delete it when you move your sources. It is a binary file for performance.

Accesses to the.c_inclrc file use file locking, so recipies usingc_incl need not use thesingle-thread
clause.

EXIT STATUS
Thec_incl command will exit with a status of 1 on any error. Thec_incl command will only exit with a
status of 0 if there are no errors.

COPYRIGHT
c_incl version 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Thec_incl program comes with ABSOLUTELY NO WARRANTY; for details use the ’c_incl -VERSion
License’ command. Thisis free software and you are welcome to redistribute it under certain conditions;
for details use the ’c_incl -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 25

COOK(1) COOK(1)

NAME
cook − a file construction tool

SYNOPSIS
cook [option...][filename...]
cook −Help
cook −VERSion

DESCRIPTION
Thecookprogram is a tool for constructing files. It is given a set of files to create, and instructions
detailing how to construct them. In any non-trivial program there will be prerequisites to performing the
actions necessary to creating any file, such as extraction from a source-control system. Thecookprogram
provides a mechanism to define these.

When a program is being developed or maintained, the programmer will typically change one file of several
which comprise the program. Thecookprogram examines the last-modified times of the files to see when
the prerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of
date.

Thecookprogram also provides a facility for implicit recipes, allowing users to specify how to form a file
with a given suffix from a file with a different suffix. For example, to createfilename.o from filename.c

Options and filenames may be arbitrarily mixed on the command line; no processing is done until all
options and filenames on the command line have been scanned.

Thecookprogram will attempt to create the named files from the recipes given to it. Therecipes are
contained in a file calledHowto.cookin the current directory. This file may, in turn, include other files
containing additional recipes.

If no filenames are given on the command line the targets of the first recipe defined are cooked.

OPTIONS
The valid options forcookare listed below. Any other options (words on the command line beginning with
‘−’) will cause a diagnostic message to be issued.

−Action
Execute the commands given in the recipes. This is the default.

−No_Action
Do not execute the commands given in the recipes.

−Book filename
Tells cook to used the named cookbook, rather than the default ‘‘Howto.cook’’ fi le.

−CAScade
This option may be used to enable the use of cascaded ingredients. This is the default.

−No_CAScade
This option may be used to disable the use of cascaded ingredients.

−Continue
If cooking a target should fail, continue with other recipes for which the failed target is not an
ingredient, directly or indirectly.

−No_Continue
If cooking a target should fail,cookwill exit. This is the default.

−CTime The inode st_ctime data is used to supplement the st_mtime data when determining whether or
not files have changed. Thisis the default. (If you have no idea what this is, don’t mess with it.)

−No_CTime
Do not supplement st_mtime with st_ctime. This may be important when st_nlink changes at
critical times, because making and breaking hard links touches st_ctime. (If you have no idea
what this is, seriously, don’t mess with it.)

26 Cook Reference Manual

COOK(1) COOK(1)

−Errok
When a command is executed, the exit code will be ignored.

−No_Errok
When a command is executed, if the exit code is positive it will be deemed to fail, and thus the
recipe containing it to have failed. Thisis the default.

−FingerPrint
Whencookexamines a file to determine if it has changed, it uses the last-modified time
information available in the file system. There are times when this is altered, but the file contents
do not actually change. The fingerprinting facility examines the file contents when it appears to
have changed, and compares the old fingerprint against the present file contents. (Seecookfp(1)
for a description of the fingerprinting algorithm.) If the fingerprint did not change, the last-
modified time in the file system is ignored. Note that this has implications if you are in the habit
of using thetouch(1) command −cookwill do nothing until you actually change the file.

−No_FingerPrint
Do not use fingerprints to supplement the last-modified time file information. This is the default.

−FingerPrint_Update
This option may be used to scan the directory tree below the current directory and update the file
fingerprints. Thishelps when you use another tool (such as RCS or ClearCase) which alters the
file but preserves the file’s modification time.

−Force
Always perform the actions of recipes, irrespective of the last-modified times of any of the
ingredients. Thisoption is useful if something beyond the scope of the cookbook has been
modified; for example, a bug fix in a compiler.

−No_Force
Perform the actions of the recipes if any of the ingredients are logically out of date. This is the
default.

−Help
Provide information about how to executecookonstdout, and perform no other function.

-Include filename
Search the named directory before the standard places for included cookbooks. Each directory so
named will be scanned in the order given. Thestandard places are$HOME/.cookthen
/usr/local/share/cook.

−Include_Cooked
This option may be used to require the cooking of files named on#include-cookedand#include-
cooked-nowarninclude lines in cookbooks. The files named will be included, if present. If the
files named need to be updated or created, this will be done, and then the cookbook re-read. This
is the default.

−No_Include_Cooked
This option may be used to inhibit the implicit cooking of files named on#include-cookedand
#include-cooked-nowarninclude lines in cookbooks. The files will be included, if present, but
they will not be updated or created, even if required.

−Include_Cooked_Warning
This option enables the warnings about derived dependencies in derived cookbooks. Thisis
usually the default.

−No_Include_Cooked_Warning
This option disables the warnings about derived dependencies in derived cookbooks.

−List
Causescook to automatically redirect thestdoutandstderr of the session. Output will continue
to come to the terminal, unlesscook is executing in the background. The name of the file will be

Reference Manual Cook 27

COOK(1) COOK(1)

the name of the cookbook with any suffix removed and ".list " appended; this will usually be
Howto.list. This is the default.

-List filename
Causescook to automatically redirect thestdoutandstderr of the session into the named file.
Output will continue to come to the terminal, unlesscook is executing in the background.

−No_List
No automatic redirection of the output of the session will be made.

-No_List filename
No automatic redirection of the output of the session will be made, however subsequent−List
options will default to listing to the named file.

−Meter
After each command is executed, print a summary of the command’s CPU usage.

−No_Meter
Do not print a CPU usage summary after each command. This is the default.

−Pairs
This option may be used to generate a list of pair-wise file dependencies, similar tolorder(1)
output. Thismay be used to draw file dependency diagrams. Itcan also be useful when
debugging cookbooks.

−Page-Lengthnumber
This option may be used to set the length of the page, used whenCook needs to paginate output.
Defaults to what the LINES environment variable tells it, or the terminal emulator tells it if
LINES isn’t set. −Page-WidthnumberThis option may be used to set the width of the page,
used whenCook needs to wrap output (e.g.when it prints commends being executed). Defaults
to what the COLS environment variable tells it, or the terminal emulator tells it if COLS isn’t set.
The maximum value fornumberis 32767.

−PARallel [number]
This option may be used to specify the number of parallel executions threads. The number
defaults to 4 if no specific number of threads is specified. See also theparallel_jobsvariable.

Use of this option on single-processor machines needs to be done with great care, as it can bring
other processing to a complete halt. Several users doing so simultaneously on a multi-processor
machine will have a similar effect. It is also to rapidly run out of virtual memory and temporary
disk space if the parallel tasks are complex.

−No_PARallel
This option may be used to specify that a single execution thread is to be used. This is the
default.

−Precious
When commands in the body of a recipe fail, do not delete the targets of the recipe.

−No_Precious
When commands in the body of a recipe fail, delete the targets of the recipe. This is the default.

−Reason
Tw o options are provided for tracing the inferencescookmakes when attempting to cook a target.
The−Reasonoption will causecookwill emit copious amounts of information about the
inferences it is making when cooking targets. Thisoption may be used when you thinkcook is
acting strangely, or are just curious.

−No_Reason
This option may be used to causecookwill not emit information about the inferences it is making
when cooking targets. Thisis the default.

28 Cook Reference Manual

COOK(1) COOK(1)

−SCript
This option may be used to request a shell script be printed on the standard output. This shell
script may be used to construct the files; it captures many of the semantics of the cookbook. This
can be useful when a project needs to be distributed, and the recipients do not havecook(1)
installed. Itcan also be very useful when debugging cookbooks.

−Silent
Do not echo commands before they are executed.

−No_Silent
Echo commands before they are executed. Thisis the default.

−STar
Emit progress indicators once a second. These progress indicators include

+ Reading the cookbook
- Executing a collect function
* Building the dependency graph
Walking the dependency graph
@ Writing fingerprint files.

−No_STar
Do not emit progress indicators. This is the default.

−Strip_Dot
Remove leading "./" from filenames before attempting to cook them; applies to all filenames and
all recipes. This is the default.

−No_Strip_Dot
Leave leading "./" on filenames while cooking.

−SymLink-Ingredients
The option asks that, when using a search path, that non-top-level recipe ingredients get a top-
level symlink to the actual file. This is intended for brain dead tools, like GNU Autoconf, that
don’t grok search paths.

−No-SymLink-Ingredients
Do not create top level symlinks to ingredients. This is the default.

−Tell_Position
This option may be used to cause the position of commands (filename and line number) to be
printed along with the command just before it is executed (provided the−No_Silentoption is in
force).

−No_Tell_Position
This option may be used to suppress printing the position of commands (filename and line
number) along with the command just before it is executed. Thisis the default.

−Touch
Update the last-modified times of the target files, rather than execute the actions bound to recipes.
This can be useful if you have made a modification to a file that you know will make a system of
files logically out of date, but has no significance; for example, adding a comment to a widely
used include file.

−No_Touch
Execute the actions bound to recipes, rather than update the last-modified times of the target files.
This is the default.

−TErminal
When listing, also send the output stream to the terminal. This is the default.

Reference Manual Cook 29

COOK(1) COOK(1)

−No_TErminal
When listing, do not send the output to the terminal.

−Time_Adjust
This option causescook to check the last-modified time of the targets of recipes, and updates
them if necessary, to make sure they are consistent with (younger than) the last-modified times of
the ingredients. This results in more system calls, and can slow things down on some systems.
This corresponds to thetime-adjustrecipe flag.

−No_Time_Adjust
Do not update the file last-modified times after performing the body of a recipe. This is the
default. Thiscorresponds to theno-time-adjustrecipe flag.

−Web
This option may be used to request a HTML web page be printed on the standard output. This
web page may be used to document the file dependencies; it captures many of the semantics of
the cookbook. It can also be very useful when debugging cookbooks.

name=value
Assign thevalueto the named variable. Thevalue may contain spaces if you can convince the
shell to pass them through.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forcookare long, this means ignoring
the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Thecookcommand will exit with a status of 1 on any error. Thecookcommand will only exit with a
status of 0 if there are no errors.

FILES
The following files are used bycook:

Howto.cook
This file contains instructions tocook for how to construct files.

/usr/local/share/cook
This directory contains "system" cookbooks for various tools and activities.

.cook.fp This text file is used to remember fingerprints between invocations.

ENVIRONMENT VARIABLES
The following environment variables are used bycook:

COOK May be set to contain command-line options, changing the default behavior ofcook. May be
overridden by the command line.

PA GER Use to paginate the output of the−Help and−VERSion options. Defaults tomore(1) if not set.

COOK_AUTOMOUNT_POINTS
A colon-separated list of directories which the automounter may use to mount file systems. Use
with extreme care, as this distorts Cook’s idea of the shape of the file system.

This feature assumes that paths below the automounter’s mount directory are echoes of paths
without it. E.g.When/home is the trigger, and /tmp_mnt/home is where the on-demand
NFS mount is performed, with/home appearing to processes to be a symlink.

30 Cook Reference Manual

COOK(1) COOK(1)

This is the behavior of the Sun automounter. The AMD automounter is capable of being
configured in this way, though it is not typical of the examples in the manual. Nor is it typical of
the out-of-the-box Linux AMD configuration in many distributions.

Defaults to ‘‘/tmp_mnt:/a:/.automount ’’ i f not set.

COPYRIGHT
cookversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Thecookprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’cook -VERSion
License’ command. Thisis free software and you are welcome to redistribute it under certain conditions;
for details use the ’cook -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 31

cook_bom(1) cook_bom(1)

NAME
cook_bom − bill of materials

SYNOPSIS
cook_bom[option...] dirname[outfile]
cook_bom -Help
cook_bom -VERSion

DESCRIPTION
Thecook_bomprogram is used to scan a directory and generate a cookbook fragment containing a bill of
materials for that directory. It also includes a recursive reference, via an ‘‘#include-cooked’’ directive, to
the bills of materials for nested directories.

Output is sent to the standard output unless an output filename is specified.

OPTIONS
The following options are understood:

-DIRectory pathname
This option may be used to specify a directory search path, similar tocook(1) [search_list]
functionality.

-Help
Provide some help with using thecook_bomprogram.

-IGnore string
This option may be used to specify filename patterns to be ignored. It may be given as many
times as required.

-PREfix string
This option may be manipulate the name of the manifest files. Defaults to the empty string if not
set.

-SUFfix string
This option may be manipulate the name of the manifest files. Defaults to ‘‘/manifest.cook
if not set.

-VERSion
Print the version of thecook_bomprogram being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forcook_bomare long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Thecook_bomcommand will exit with a status of 1 on any error. Thecook_bomcommand will only exit
with a status of 0 if there are no errors.

EXAMPLE
The intended use of this command is to automatically generate a project file manifest in an efficient way. If
you have a cookbook of the form

all_files_in_. = ;
#include manifest.cook

32 Cook Reference Manual

cook_bom(1) cook_bom(1)

manifest = [all_files_in_.];

set fingerprint mkdir unlink;

%0manifest.cook: ["if" [in "%0" ""] "then" "." "else" "%0"]
{

cook_bom
[addprefix ’--dir=’ [search_list]]
"--ignore=’*˜’"
[need]
[target]
;

}
At the end of this fragment, themanifest variable contains a complete list of all files in the directory
tree. Thisvariable may then be taken apart with thematch_mask function to build ingredients lists.

The constructedmanifest.cookfiles work for both whole-project and recursive (not recommended) builds.

COPYRIGHT
cook_bomversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Thecook_bomprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’cook_bom
-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain
conditions; for details use the ’cook_bom -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 33

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- to make sure it remains free software for all its users.We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors.You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. Thesystematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of

34 GPL GNU

GPL(GNU) FreeSoftware Foundation GPL(GNU)

the earlier work or a work “based on” the earlier work.

A “ covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “ Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form.A “ Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. ThisLicense acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force.You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Thosethus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your

GNU GPL 35

GPL(GNU) FreeSoftware Foundation GPL(GNU)

copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any leg al power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to

36 GPL GNU

GPL(GNU) FreeSoftware Foundation GPL(GNU)

apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the Corresponding Source may be on a
different server (operated by you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A “ User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in

GNU GPL 37

GPL(GNU) FreeSoftware Foundation GPL(GNU)

ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“A dditional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed
by this License along with a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,

38 GPL GNU

GPL(GNU) FreeSoftware Foundation GPL(GNU)

or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License.You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. Ifpropagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “ contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s

GNU GPL 39

GPL(GNU) FreeSoftware Foundation GPL(GNU)

essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement).To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License.You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of
the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. Theterms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License,

40 GPL GNU

GPL(GNU) FreeSoftware Foundation GPL(GNU)

section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiv er of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

GNU GPL 41

GPL(GNU) FreeSoftware Foundation GPL(GNU)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type “show w”. This is free
software, and you are welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

42 GPL GNU

cook_rsh(1) cook_rsh(1)

NAME
cook − load balancing rsh

SYNOPSIS
cook [option...] architecture command[argument...]
cook -Help

DESCRIPTION
Thecookprogram is a wrapper aroundrsh(1) which does simple load balancing. It obtains its load
information by running therup(1) command, and selects the most suitable host hased on the architecture
you specify, and the least load of all hosts of that architecture.

The first command line argument is the architecture name which is used to get the list of possible hosts.
From that list therup(1) command is run to determine the host with the lowest load, which is in turn used
as the first argument of the eventualrsh(1) command.

COOKBOOKS
In order to make use of this program, somewhere in your cookbook, you need to add a line which reads

parallel_rsh = "cook";
If the host chosen is the same as the caller (build host) then this program just exec the command skipping
the rsh. So it costs nothing to use this in a one machine network!

For each recipe you want distributed to a remote host, you need to add a host-binding attribute to.Typical
usage is where you have a muti-architecture build.

%1/%0%.o: %0%.c
host-binding %1 {
cc -o [target] -c [resolve %0%.c]; }

In the recipe given here, each architecture has its object files placed into a separate architecture-specific
directory tree. The architecture name (%1) is used in the host-binding, so that the compiles may be load-
balanced to all machines of that architecture.

If you need a command to run on a specific host (say, because that’s where a specific application license
resides), then simply use the host name in the host-binding attribute, rather than an architecture name.

DEFINING THE CLASSES
The/usr/local/share/cook/host_lists.plfile is expected to exist, and to contain variable definitions used to
determine if hosts are members of particular architectures.

The/usr/local/share/cook/host_lists.plfile defines a perl HOL "hash of lists" The hash is%ArchNames
and it maps names of architectures as user want to see them, to list references as the actual lists are stored.

The names of each architecture could be any form you wish but the convention is to use the GNUish names
such as "sparc-sun-solaris2.8".

For each architecture, define one or more lists of machines according to what function each machine set
may do. This can be as simple or as elaborate as required. The form of the list variable name can be any
valid perl identifier but may as well be like the architecture name with dash changed to underbar and dot
removed, and the type added.For example one might define solaris hosts as:

@sparc_sun_solaris28_hosts = (
"mickey", "minny", "scrooge");

And linux hosts as:
@i386_linux22_hosts = (

"goofy", "scrooge");

If there is a need to define different sets of machines for different types of jobs then add a suffix to the
names in thehost-bindingdirective on each of the recipes, and lists here with the same suffix.

The hash to map argument names to lists is defined like:
%ArchNames = (

"sparc-solaris2.8", => @sparc_solaris28_hosts,
"i586-unknown-linux22", => @i386_linux22_hosts,);

Reference Manual Cook 43

cook_rsh(1) cook_rsh(1)

Of course if users have differing opinions as to what the architecture names should look like, you can define
"alias" mappings as well.

"sun4-SunOS-5.8", => @sparc_solaris28_hosts,
Or maybe the level is of no importance, then define

"sparc-solaris", => @sparc_solaris28_hosts,
"sparc-solaris2.7", => @sparc_solaris28_hosts,

Also, this list isn’t allowed to be empty.

And finally, curtesy of Perl, the last line of the file must read
1; for obscure and magical reasons.

SYSLOG LOGGING
Typical commands seen during a build would look like

sh -c ’cd /aegis/dd/gumby2.2.C079 && \ sh -ce /aegis/dd/gumby2.2.C079/.6.1; \ echo $? >
/aegis/dd/gumby2.2.C079/.6.2’

So we can extract the project/ change from the command quite easily and logging it via syslog would be a
trivial addition.

OPTIONS
This command is not usually given any options.

−h Help - show usage info

−vP Verbose - report choice

−Tn Trace value for testing

FILES
/usr/local/share/cook/exclude.hosts

This file is used to list those host which must not be used by this script. Simply list excuded
hosts, one hostname per line. If the file is absent, all hosts reported by rup(1) may be used.

/usr/local/share/cook/host_lists.pl
This file defines the classes of hosts for each architecture.

AUTHOR
Jerry Pendergraft <jerry@endocardial.com>

44 Cook Reference Manual

cookfp(1) cookfp(1)

NAME
cookfp − calculate file fingerprint

SYNOPSIS
cookfp [option...][filename...]
cookfp -Help
cookfp -VERSion

DESCRIPTION
Thecookfpprogram is used to calculate the fingerprints of files.A fingerprint is a hash of the contents of a
file. Thedefault fingerprint is cryptographically strong, so the probability of two different files having the
same fingerprint is less than 1 in 2**200.

The fingerprint is based on Dan Berstien <djb@silverton.berkeley.edu> public domain fingerprint 0.50 beta
package 930809, posted to the alt.sources newsgroup. Thisprogram produces identical results; the
expected test results were generated using Dan’s package.

The fingerprint is a base-64-sanely-encoded fingerprint of the input. Imagine this fingerprint as something
universal and permanent.A fingerprint is 76 characters long, containing the following:

1. A Snefru-8 (version 2.5, 8 passes, 512->256) hash. (Derived from the Xerox Secure Hash Function.)

2. An MD5 hash, as per RFC 1321. (Derived from the RSADSI MD5 Message-Digest Algorithm.)

3. A CRC checksum, as in the new cksum utility.

4. Length modulo 2ˆ40.

The output format is not expected to be compatible with anything. However, options are available to
produce the purported output of Merkle’s snefru program, the purported output of RSADSI’s mddriver -x,
or the purported output of the POSIX cksum program.

If no files are named as input, the standard input will be used. The special file name ‘‘-’’ is understood to
mean the standard input.

OPTIONS
The following options are understood:

-Checksum
Print the CRC32 checksum and length of the named file(s).

-Identifier
Print a condensed form of the fingerprint (obtained by performing a CRC32 checksum on the full
fingerprint described above - a definite overkill). This is an 8-digit hexadecimal number, useful
for generating unique short identifiers out of long names. The first character is forced to be a
letter (g-p), so there is no problem in using the output as a variable name.

-Help
Provide some help with using thecookfpprogram.

-Message_Digest
Print the RSA Data Security, Inc. MD5 Message-Digest Algorithm hash of the named file(s).

-Snefru Print the Snefru hash of the named file(s), derived from the Xerox Secure Hash Function.

-VERSion
Print the version of thecookfpprogram being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The

Reference Manual Cook 45

cookfp(1) cookfp(1)

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forcookfpare long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Thecookfpcommand will exit with a status of 1 on any error. Thecookfpcommand will only exit with a
status of 0 if there are no errors.

COPYRIGHT
cookfpversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Thecookfpprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’cookfp -VERSion
License’ command. Thisis free software and you are welcome to redistribute it under certain conditions;
for details use the ’cookfp -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Portions of this program are derived from sources from other people, sometimes with liberal copyrights,
and sometimes in the public domain. These include:

Dan Bernstien
Seecommon/fp/READMEfor details.

Gary S Brown.
Seecommon/fp/crc32.cfor details.

RSA Data Security, Inc.
Seecommon/fp/md5.cfor details.

Xerox Corporation
Seecommon/fp/snefru.cfor details.

In addition to the above copyright holders, there have been numerous authors and contributors, see the
named files for details. Files names are relative to the root of thecookdistribution.

46 Cook Reference Manual

COOKTIME(1) COOKTIME(1)

NAME
cooktime − set file times

SYNOPSIS
cooktime [option...] filename...
cooktime -Help
cooktime -VERSion

DESCRIPTION
Thecooktimeprogram is used to set the modified time or access time of a file. This can be used to defend
against unwanted logical dependencies when making "minor" changes to files.

If no option is specified, the default action is as if "−Modify now" was specified.

OPTIONS
The following options are understood.

−Accessdate
This option may be used to set the last-access time of the files. The date is relatively free-format;
rember to use quotes to insulate spaces from the shell.

−Modify date
This option may be used to set the last-modify time of the files. The date is relatively free-
format; rember to use quotes to insulate spaces from the shell.

−Time-Stamp-Granularity seconds
This option may be used to specify the granularity of the filesystem’s timestamps, otherwise a
default value of 1 second is used.

−Report
When use alone, produces a listing of access times and modify times for the named files. When
used with -Access or -Modify, produces a listing of the changes made.

−Help
Give some information on how to use thecooktimecommand.

Any other option will generate a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forcooktimeare long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Thecooktimecommand will exit with a status of 1 on any error. Thecooktimecommand will only exit
with a status of 0 if there are no errors.

COPYRIGHT
cooktimeversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Thecooktimeprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’cooktime
-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain
conditions; for details use the ’cooktime -VERSion License’ command.

Reference Manual Cook 47

COOKTIME(1) COOKTIME(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

48 Cook Reference Manual

FIND_LIBS(1) FIND_LIBS(1)

NAME
find_libs − find pathnames of libraries

SYNOPSIS
find_libs [-L path...][-lname...]
find_libs -Help
find_libs -VERSion

DESCRIPTION
The find_libsprogram is used to find the actual pathname of a library specified on acc(1) command line.
This allowscook(1) to know these dependencies.

OPTIONS
The following options are understood.

-L path
Specify a path to search for libraries on. If more than one is specified, they will be scanned in the
order given before the standard/usr/lib and /lib places. Thisis like the same argument tocc(1),
and the usual find_libs option abbreviation rules do not apply.

-lname
Name a library to be searched for. This is like the same argument tocc(1), and the usual find_libs
option abbreviation rules do not apply.

-Help
Give some information on how to use thefind_libscommand.

-VERSion
Tell the version of thefind_libscommand currently executing.

All other options will result in a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forfind_libsare long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The find_libscommand will exit with a status of 1 on any error. The find_libscommand will only exit
with a status of 0 if there are no errors.

COPYRIGHT
find_libsversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

The find_libsprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’find_libs
-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain
conditions; for details use the ’find_libs -VERSion License’ command.

Reference Manual Cook 49

FIND_LIBS(1) FIND_LIBS(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

50 Cook Reference Manual

make2cook(1) make2cook(1)

NAME
make2cook − translate makefiles into cookbooks

SYNOPSIS
make2cook[option...][infile [outfile]]
make2cook -Help
make2cook -VERSion

DESCRIPTION
Themake2cookprogram is used to translateMakefiles into cookbooks. This command is provided to ease
the transition to using thecookcommand.

If no input file is named, or the special name‘‘ -’’ is used, input will be taken from the standard input. If no
output file is named, or the special name‘‘ -’’ is used, output will be taken from the standard output.

SEMANTICS
There is no one-to-one semantic mapping betweenmakesemantics andcooksemantics, so the results will
probably need some manual editing.

The functionality provided by classicmake (1) implementations is accurately reproduced. Extensions, such
as those offered by GNU Make or BSD make, are not always understood, or are sometimes not reproduced
identically.

The following subsections enumerate a few of the things which are understood and not understood. They
are probably not complete.

Understood
Thecookprogram requires variables to be defined before they are used, whereasmakewill default them to
be empty. This is understood, and empty definitions are inserted as required.

Most of the builtin variables of GNU Make are understood.

Most of the builtin rules of classic make, GNU Make and BSD make are reproduced.

For best resultsthere should be a blank line after every rule, so that there can be no confusion where one
rule ends and a new one begins.

Builtin variables are defaulted from the environment, if an environment variable of the same name is set.

The GNU Makeoverride variable assignment is understood.

The GNU Make ‘‘+=’ ’ assignment is understood.

The GNU Make ‘‘:=’ ’ variable assignment is understood.

Traditional make assignments are macros, they are expanded on use, rather than on assignment. Thecook
program has only variables. Assignmentstatements are re-arranged to ensure the correct results when
variables are referenced.

Single and double suffix rules are understood. The .SUFFIXES rules are understood and honoured. Hint:
if you want to suppress the builtin-recipes, use a .SUFFIXES rule with no dependencies.

The .PHONY rule is understood, and is translated into aset forcedflag in appropriate recipes, except files
from implicit recipes.

The .PRECIOUS rule is understood, and is translated into aset preciousflag in the appropriate recipes,
except files from implicit recipes.

The .DEFAULT rule is understood, and is translated into an implicit recipe.

The .IGNORE rule is understood, and is translated into aset errokstatement.

The .SILENT rule is understood, and is translated into aset silentstatement.

Most GNU Make functions are understood. Thefilter and filter-out functions only understand a single
pattern. Thesort function does not remove duplicates (wrap thestringsetfunction around it if you need
this).

Reference Manual Cook 51

make2cook(1) make2cook(1)

The GNU Make static pattern rules are understood. They are translated into recipe predicates.

The GNU Make and BSD makeincludevariants are understood.

The bizarre irregularities surrounding archive files in automatic variables and suffix rules are understood,
and translated into consistent readable recipes. Themakesemantics are preserved.

The BSD make.CURDIRvariable is understood, and translated to an equivalent expression. Itcannot be
assigned to.

The GNU Make and BSD make conditionals are understood, provided that they bracket whole segments of
the makefile, and that these segments are syntactically valid. Cconditionalsmay also appear within rule
body commands. Conditionals arenot understood within the lines of adefine.

The GNU Makedefineis understood, but its use as a kind of ‘‘function definition’’ i s not understood.

The GNU Makeexport andunexportdirectives are understood.

Not Understood
Thecookprogram tokenizes its input, whereas make does textual replacement. The shennanigans required
to construct a make macro containing a single space are not understood. The translation will result in a
cookvariable which is empty.

References to automatic variables within macro definitions will not work.

The GNU Makeforeachfunction is olny partially understood. This has no exactcookequivalent.

The GNU Makeorigin function is not understood. This has nocookequivalent.

Thearchive((member)) notation is not understood. These semantics are not available fromcook.

The MAKEFILESandMAKELEVELvariables are not translated, If you wish to reproduce this
functionality, you must edit the output.

The MAKEFLAGSandMFLAGSvariables will be translated to use the Cookoptionsfunction, which has a
different range of values.

Many variants of make can use builtin rules to make the Makefile if it is absent.Cook is unable to cook the
cookbook if it is absent.

Wildcards are not understood in rule targets, rule dependencies or include directives. If you want these,
you will have to edit the output to use the[wildcard] function.

Home directory tildes (˜) are not understood in targets and dependencies. If you want this, you will have to
edit the output to use the[home] function.

The-l home dependency is not understood to mean a library. If you want this, you will have to edit the
output to use the[collect findlibs -lname] function.

The.EXPORT_ALL_VARIABLESrule is not understood. This has nocookequivalent.

OPTIONS
The following options are understood:

-Help
Provide some help with using themake2cookcommand.

-Environment
This option causes fragments to test for environment variables when performing the default
settings for variables. (Thiscorresponds to the make -e option.)

-History_Commands
This option causesmake2cookto include recipes forRCSandSCCSin the output.

-Line_Numbers
Insert line number directives into the output, so that it is possible to tell where the lines came
from. Mostuseful when debugging.make2cookprogram.

52 Cook Reference Manual

make2cook(1) make2cook(1)

-No_Internal_Rules
This option may be used to supress all generation of recipes corresponding to make’s internal
rules. (Thiscorresponds to the make -r option.)

-VERSion
Print the version of themake2cookprogram being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names formake2cookare long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Themake2cookcommand will exit with a status of 1 on any error. Themake2cookcommand will only exit
with a status of 0 if there are no errors.

COPYRIGHT
make2cookversion 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Themake2cookprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’make2cook
-VERSion License’ command. Thisis free software and you are welcome to redistribute it under certain
conditions; for details use the ’make2cook -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 53

ROFFPP(1) ROFFPP(1)

NAME
roffpp − replace .so requests within *roff sources

SYNOPSIS
roffpp [option...][infile [outfile]]
roffpp -Help
roffpp -VERSion

DESCRIPTION
Theroffpp command may be used to copies the input file to the output file, including files named using.so
directives along the way, and removing the.sodirectives.

This is useful when processing large multi-file documents with filters such astbl(1) oreqn(1) which do not
understand the.sodirective. The.nx directive is not understood. Theroffpp program is not a general *roff
interpreter, so many constructs will be beyond it, fortunately, most of them have nothing to do with include
files. Includefiles which cannot be found, probably from uninterpreted *roff constructs, if the files really
does exist, will simply be passed through unchanged, for *roff to interpret at a later time.

Theroffpp program also allows the user to specify an include search path. This allows, for example,
common files to be kept in a central location.

Only directives of the form
.so filename

are processed. If the directive is introduced using the single quote form, or the dot is not the first character
of the line, the directive will be ignored.

Any extra arguments on the line are ignored, and quoting is not understood. All characters are interpreted
literally.

Examples of directives which will be ignored include
’so /usr/lib/tmac/tmac.an
.if n .so yuck

This list is not exhaustive.

The special file name ‘−’ on the command line means the standard input or standard output, as appropriate.
Files which are omitted are also assumed to be the standard input or standard output, as appropriate.

The output attempts to keep file names and line numbers in sync by using the.lf directive. The.lf directive
is also understood as input. This is compatible withgroff (1) and the other GNU text utilities included in
the groff package.

OPTIONS
The following options are understood.

-I path
Specify include path, a lacc(1). Includepaths are searched in the order specified. The include
search path defaults to the current directory if and only if the user does not specify any include
search paths.

-Help
Give information on how to useroffpp.

-VERSion
Tell what version ofroffpp is being run.

Any other option will generate a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

54 Cook Reference Manual

ROFFPP(1) ROFFPP(1)

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names forroffpp are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
Theroffpp command will exit with a status of 1 on any error. Theroffpp command will only exit with a
status of 0 if there are no errors.

COPYRIGHT
roffpp version 2.34
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

Theroffpp program comes with ABSOLUTELY NO WARRANTY; for details use the ’roffpp -VERSion
License’ command. Thisis free software and you are welcome to redistribute it under certain conditions;
for details use the ’roffpp -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Cook 55

ROFFPP(1) ROFFPP(1)

1000 Cook Reference Manual

